Welcome
The Genomic Sciences Training Program (GSTP) at the University of Wisconsin-Madison aims to train the New Biologists, enabling them to gain strengths bridging multiple disciplines needed for gaining an integrated approach to solving complex problems in genomics research. GSTP faculty trainers are in 14 different departments spanning physical, chemical, biological, and computational approaches. GSTP is supported by an institutional training grant from the National Human Genome Research Institute (T32HG002760).
The University of Wisconsin-Madison has built on its core of genomic scientists, laying the foundation for GSTP, which educates and supports both predoctoral and postdoctoral fellows. GSTP was further advanced by a cluster hiring initiative in the genomic sciences, which brought together outstanding faculty spanning across many disciplines. This effort was also synergized by the construction of a building dedicated to genomic science and genetics, designed to foster collaborations and to project a tangible presence on campus. Accordingly, our program is training the next generation of genomicists in multiple disciplines. These disciplines include chemistry, engineering, computer science, biostatistics, genetics, biochemistry, molecular medicine and systems biology.
Many of the GSTP faculty trainers are innovators in creating new technologies for advancing genomic analysis as well as pioneers in probing complex biological problems on a genomic level. The University has strengths across many of its departments and is one of the top universities in the country. It ranks sixth in the U.S. in research expenditure. UW-Madison has one of the largest university biological research communities, with over 700 faculty, 1,500 academic staff, 700 postdoctoral fellows, 2,500 graduate students, and tens of thousands of undergraduates. It is known for interactive and communicative exchanges among many departments, laying the foundation for a nurturing yet challenging intellectual environment in which to develop and pursue a research career.
The genomic sciences are defining the “New Biology” for this century. A key feature of this New Biology (Schwartz, Nat’l. Acad. Press 2004) is the acquisition and interpretation of staggeringly large data sets (implying high-throughput measurement) that are becoming increasingly multi-dimensional. A key challenge is to maintain clear biological focus on important problems in the face of increasingly complex experimental systems and the requirement for sophisticated means for their analysis. Clearly, we have an on-going paradigm shift in the way we think about biological problems and the way that we go about solving them. This thinking requires that universities must train the new biologists to operate within this new intellectual space.
Invention and Innovation: We are witnessing an important waypoint in the maturation of the genomic sciences. The current genomic landscape features very large, high dimensional data sets, generated by large-scale efforts in genome sequencing, transcriptional profiling, structural genomics, proteomics, metabolomics and the like. We derive rich biological and genetic insights from such data sets by both local and global considerations using analysis approaches that span from knowledgeable hunches to established pathways, or networks. However, significant and somewhat “complete” answers to important biological problems do not necessarily scale with the breadth and depth of relevant data sets, and often evade knowledgeable hypotheses generation.
Given the above, a critical mission for GSTP is training young scientists to innovate more effectively, in far reaching ways, perhaps to engender the next revolution built on contemporary, yet cutting- edge ideas drawn from the genomic sciences. Discoveries in human biology/genomics stem from innovation, but must also effectively touch the clinic. GSTP places special emphasis on supporting and training innovators who will create new tools, especially those who will blur the boundaries between experimental (instrumentation, devices, imaging, cell biology) and theoretical (statistics, computer science, mathematics) investigation through fine – grained integration, or invention. GSTP training also emphasize the role that invention plays in the genomic sciences and engages trainees to be active learners in their pursuit of understanding the process of invention as it relates to research efforts.
Apply for GSTP Traineeships: GSTP is recruiting pre- and postdoctoral trainees who will create the new paradigms in genomic sciences. Invention is the poetry of science featuring rigorous scientific thinking and technological innovation that combine to address grand challenges through unusually creative research endeavors. GSTP is seeking applications from graduate students and postdoctoral researchers pursuing projects featuring innovative thinking that will usher in new ways to conceive biological/genetic investigations through invention. Write lpape@wisc.edu to request application materials and more information.
GSTP Seminar Series
Genomic Sciences Program Seminar Series
Fall 2024
Chem 923
Thursdays, 10:00 am (unless noted otherwise)
-
- Sept. 5
Barak Cohen, PhD, Professor of Computational Biology, Genetics, Washington Univ., Integration of cis-regulatory information in the genome, 1:30 - Sept. 11
Chris Hittinger, PhD, Professor (Genetics, UW-Madison), The genomic marking of metabolic niche breadth in a eukaryotic subphylum, 3:30
- Sept. 18
Russ Corbett Detig, PhD, Professor (Biomolecular Engineering, UC Santa Cruz), Transposable Elements Drive The Evolution of New Introns, 3:30
- Sept. 26
Introductory Session - Oct. 3
Kyle Gaulton, PhD, Ass’t. Prof., Pediatrics, Inst. for Genomic Medicine, UC San Diego, Title TBA, 1:30 pm - Oct. 9
Aaron Gitler, PhD, Professor (Genetics, Stanford Univ.), Title TBA, 3:30 - Oct. 17
GSTP Trainees Presentation, Title TBA - Oct. 28
Kevin Dean, PhD, Ass’t. Prof., Dept. of Bioinformatics, UT Southwestern, Title TBA, 12:00
- Nov. 7
Hee-Sun Han, PhD, Ass’t. Prof., Chemistry, Univ. Illinois Urbana-Champaign, Comparative whole brain spatial omics: Molecular annotation of neuronal circuitry, 1:30
- Nov. 15
Yaping Liu, Ass’t. Prof., Biochemistry and Molecular Genetics, Northwestern University, Title TBA, 12:00
- Nov. 21
GSTP Trainees Presentation, Title TBA - Nov. 28
No seminar, Thanksgiving - Dec. 5
Brian Davis, Ass’t. Prof., Biomedical Genetics, Texas A&M, Pangenomes in canine and equine, the next evolution of comparative genomics, 1:30 pm
- Sept. 5
Instructor:
David C. Schwartz (Vilas Distinguished Achievement Professor, Departments of Chemistry and Genetics; Biotechnology Center);
Upcoming Retreat
Coming soon.
Recent News
Coming soon.